The Autonomous Vehicle: A Look Through History

the autonomous vehicle in action

The wave of the future

The autonomous vehicle, or self-driving car, has become the focus of the automotive world. More and more, you hear that the connected car is the answer to a variety of transportation ills. From Google to Volvo to Ford to Uber and Lyft, the industry of moving you from one place to another is working feverishly to make the once science fiction dream of a driverless vehicle a reality. However, this seemingly 21st century innovation has not only been in people’s minds for centuries, but attempts and working prototypes have been pursued across the ages.

What exactly is an autonomous vehicle?

The autonomous vehicle label has become quite the buzz. But what makes a regular, everyday car into a self-driving connected car? An autonomous vehicle is any car that drives itself through a set of computerized controls hardwired into the automobile’s brain or electronic control unit (ECU). The idea has been the stuff of dreams since as far back as the great Leonardo da Vinci with his horseless carriage idea, an invention meant as a novelty to surprise and delight attendants of festivals during renaissance times that would take centuries to figure out how to build.

While there have been several attempts throughout the years to make a self-driving, fully autonomous car come to life, success has been elusive. However, the interest has never wavered and the automotive world and general public became even more energized with a look into the future that sent minds reeling at the 1939 World’s Fair in New York.

General Motors and dreams of innovation

World's Fair map

Road map for 1939 New York World’s Fair

General Motors (GM) is no stranger to vehicle innovation. It was the first automaker to envision a type of autonomous technology with the presentation of a computerized navigation system for its cars known as Driver Aid, Information and Routing System (DAIR) back in 1966. The ambitious yet unwieldy invention would lead to the creation of OnStar in the 1980s. Therefore, it comes as no surprise that GM presented their idea of the self-driving car at the 1939 World’s Fair in New York.

The Futurama bird's eye view

The Futurama, GM’s vision

The tagline of the storied pre-World War II extravaganza was “The World of Tomorrow.” Hundreds of thousands of visitors flocked to the extraordinary promise of a unique and technologically advanced horizon shown throughout the fairgrounds. GM’s pavilion featured the most popular attraction called The Futurama, a ride that took visitors through what life would be like in the year 1960. While the exhibit was more about urban planning and creating a highway system—which wouldn’t become reality until 1956—tiny radio controlled cars that automatically kept their distance from each other were presented on the roads, a precursor to adaptive cruise control and autonomous vehicle technology. This future vision was crafted by mercurial theatre and industrial designer, Norman Bel Geddes. While 1960 has come and gone and the glorious, smooth driving fully autonomous future has yet to be realized, the commitment to and belief in a driverless world is stronger and more pervasive than ever.

Why self-driving car technology matters?

Driving a car is essential to many people’s lives. Getting behind the wheel of an automobile and transporting yourself, others and supplies or equipment for work, play or charity, have led to the continued—albeit sometimes shaky—growth of what is now a $9 trillion+ automotive industry. The automobile has been in consumer use since Karl Benz and Gottlieb Daimler created their vehicle empire in 1895 then made even more accessible when Henry Ford turned what was basically a luxury item into something the masses could afford. These horseless carriages have dominated the transportation industry ever since and incorporating autonomous technology to create self-driving cars has been a goal that may well have been prompted by Leonardo’s self-propelled carriage over five centuries ago.

The “Linrrican Wonder,” a 1926 Chandler rigged with a transmitting antenna, became the first documented case of a “driverless car” that same year. It “drove” through the streets of New York City while controlled by a follow vehicle. Having a tracking car may seem to negate the fully autonomous goal of a driverless vehicle, but the Linrrican Wonder maneuvered on a public road in the most populous city in America even back then, giving hope to the automotive industry of a future it continues to fervently pursue to this day.

Huge strides continue to be made in the world of self-driving cars which are propelled by 3 major issues on the road today: traffic congestion, road fatalities and environmental impact. But will driverless cars really alleviate all of these problems?

Alleviating gridlock

autonomous vehicles to help with gridlock

Photo By Hikosaemon via Wikimedia Commons

There’s a two-pronged effect here with autonomous vehicles. Shared self-driving cars lead to less automobiles on the road. Also, operator error causes the bulk of traffic accidents which then leads to even more traffic congestion—slowing down to rubberneck, lane closures, etc. Autonomous vehicle technology incorporates such systems as collision avoidance and adaptive cruise control to create both safer conditions and smart distance between cars.  These two together allow the vehicles to keep pace with and from each other in ways that keep the flow of traffic consistently moving.

Staying alive on the road

autonomous vehicles to address safe driving

2015 saw 35,200 car-related deaths in the U.S. alone. This staggering number has prompted the Department of Transportation (DOT) to push for policies that more actively regulate self-driving car research and development. Human error accounts for 94% of all fatalities on the highway and implementing innovative vehicle technology in the form of fully autonomous smart cars is felt to be the answer. Again, collision avoidance systems play an integral part in keeping passengers safe and lowering traffic fatalities and accidents in general.

Lower emissions and better fuel efficiency

autonomous vehicles programmed for better fuel efficiency

An autonomous car is designed to be more fuel efficient not only by the mere fact that many use alternative fuels, but the way they travel in conjunction with other vehicles and on the road in general. These vehicles are built to move in such a way that they make the best use of their fuel and brake/accelerate more strategically, thereby reducing whatever gas emissions they produce or drain on a power cell. Traditional and adaptive cruise control (ACC) acts as a strategic partner in supporting this by automatically maintaining an ecologically friendly rate of speed.

The ins and outs of self-driving car technology

What makes a self-driving car drive itself? It’s a combination of a variety of interfaces and connections. Per engineering professor, Sridhar Lakshmanam of University of Michigan—Dearborn, three things are needed to make an everyday vehicle successfully navigate a public road autonomously: a GPS, a system that reads road conditions, and a processor that takes all of that data and turns it into action.

how an autonomous vehicle works

The technology behind autonomous vehicles

The GPS needed is pretty much the same type of system used today. It provides a basic view of maps and where the car can go. Radar and lidar sensors are instrumental in the system that can see road conditions as are on-board cameras.

Radar uses radio waves to distinguish what is going on around the car while a lidar sensor uses lasers to detect the environment, obstacles and more by sending out a series of light pulses at specific intervals to pick up external information. These combine with the on-board cameras to take all of the information of what is going on around the vehicle—the environment and dynamic situations—and send it to the brain so the car can actually react—brake, accelerate, turn, etc.—accordingly.

On-board cameras also contribute to the successful operation of autonomous vehicles. These visually capture the conditions and potential hazards of the road in real time and process that information through sophisticated computer software. The car’s brain then takes that and

Part of this smart communication is vehicle-to-vehicle (V2V) interaction. The ability for cars to speak with each other will help in making this driverless future a safe reality. Per the National highway Traffic Safety Administration (NHTSA) one automobile can relay various “important safety and mobility information” to another, thereby supporting the three goals mentioned above: alleviate gridlock, save lives and lower emissions. And with safe future comes changes to government.

The ups (and downs) of the autonomous vehicle

Due to the nature of less human interaction,  an autonomous vehicle means fewer parking and moving violations, which provide a good chunk of money into local and state agency coffers. However, the safety and strengthening of the transportation systems save government and taxpayers money and lives. The Brookings Institute breaks it down as follows:

  • An estimated $10 billion per year saved by taxpayers due to the public shouldering the bill for seven percent of vehicle crash costs
  • A savings of $100 billion per year due to the elimination of congestion, damages to infrastructure and resources spent on road improvement.
  • Cutting travel times by sending vehicles to better road options which saves on the cost of fixing roadways and bridges
  • An overall estimated savings of $211 billion a year to state, local and federal governments

With all of this possibility, however, it begs the question: just how ready is the public to hand over the controls they’ve come to know with their automobiles?

The steering wheel (gear shift, pedals…): to be or not to be?

will autonomous vehicles need what drivers are used to?

As mentioned, the motor car is the most influential mode of transportation in the world. It is a staple of modern life and a symbol of autonomy, even in its purest form. Part of that comes from the ability of everyday humans to have total control over their automobile by being able to steer it themselves and operate the different gears and pedals to make it run. But in a fully autonomous, self-driving car, is it really necessary to have all of those accouterment?

Per a recent Kelley Blue Book poll, most Americans couldn’t even begin to imagine embracing a fully autonomous vehicle—called a Level 5 by both NHTSA and Kelley Blue Book. 80 percent of those polled believe human drivers need to have the ability to operate their car and 64 percent claimed they need to be the ones driving their automobiles, not some technology. While there are ranges of feelings about actually using the self-driving capability—short jaunts were felt to need operator control while autonomous vehicle technology would be welcome on long road trips—the space for human intervention in the midst of unforeseen circumstances is still felt to be necessary.

Different levels of autonomy

As mentioned, both the NHTSA and Kelley Blue Book have identified 5 stages of autonomy for cars. Both adhere to the levels as outlined by the Society of Automotive Engineers (SAE) International. They breakdown as follows:

Level 0: No Automation

The human driver has full control of the car, even if there are upgrades and technological advances in the vehicle. The person behind the wheel is the one who reacts to every situation.

Level 1: Driver Assistance

Most of the operation is handled by the driver. Some, however, like braking, can be automatically managed by the car through the data it retrieves from road conditions.

Level 2: Partial Automation

Again, the human controls most aspects of the vehicle, but some things like cruise control or lane correction are automatically handled by the vehicle as well as acceleration and deceleration based on the information gathered about the drive. The person behind the wheel, however, is expected to be the primary operator, managing the rest of the manipulation of the car as well as taking over from the automated functions should the situation arise.

Level 3: Conditional Automation

Pretty much every task a driver would perform is handled by an automated system. However, here there is the ability for the human to take control when their intervention is requested by the computer.

Level 4: High Automation

There are still a steering wheel, gas and brake pedal, and a gear shift in this level, but all of the driving is automated and there is a failsafe should the driver fail to engage when the system asks for their assistance.

Level 5: Full Automation

The car is completely automated and prepared to handle all road conditions and situations that can and will arise during the ride. The driver is turned into passenger and their assistance is not requested nor needed.

As you can see, these last three levels move from minimal mechanical driver assistance—a human operator maintains control while the car has certain enhancements to help make their drive smoother and safer— into an area where the vehicle is now actually monitoring the driving environment and reacting automatically. This is a future leap that is available in limited models for Level 3 and in test phase with fleet vehicles in levels 4 and 5 under controlled conditions on public roads —Google self-drive now known as Waymo and Uber, for example.

Paving the road to the future

The road to the future

The initial estimate of when driverless cars will truly be on the road is 2050. However, with Ford embracing the autonomous vehicle movement rather than fighting it, Baidu in California, and much more, “The World of Tomorrow” may be just around the corner. The progress to a more dynamic driverless future is constant, so keep your eyes on the road ahead.

, , , , , , , ,

Telematics: The Bridge to Your Connected Car

Telematics enables screen in carFrom automatic crash notification (ACN) to fleet management, Telematics is the “connection” that makes the connected car a wireless marvel of the automotive world.

Telematics is a hot topic these days. With the current focus on self-driving vehicles, connected cars, cyber security, and especially, rising levels of traffic fatalities, the communication network that makes it possible for your automobile to move and react on its own is rapidly innovating. Telematic solutions are more readily available for all vehicles and even mandated as standard in some countries. The technology’s origin is oddly similar to that of the Jeep, and its integration into day-to-day life has been as seamless as that ubiquitous, stalwart vehicle.  But what exactly is telematics?

The term “telematics” is a translation of “telematique.” This was coined by two French scientists in a 1978 report to the French government on the computerization of society. They combined “telecommunications” with “informatique.” Per the Oxford Dictionary, it is defined as “the branch of information technology which deals with the long-distance transmission of computerized information.” And this brings us to its origins.

U.S. armed forces initiative goes globally civilian

The United States Navy began experimenting with satellite navigation to track its nuclear submarines in the early 1960s. By using the “Doppler Effect”–shifts in the satellite’s radio signal–captains could accurately find a sub’s location in minutes. The Department of Defense (DoD) then took what naval scientists had learned and launched its first Navigation System with Timing and Ranging (NAVSTAR) satellite in 1978. By 1993, it included 24 satellites and became the Global Positioning System (GPS).

Today, GPS is owned by the U.S. Government and run by the United States Air Force (USAF). It operates on two different levels to accommodate the separation between military/government use and worldwide access: Precise Positioning Service (PPS) and Standard Positioning Service (SPS). PPS is accessible to U.S. Armed Forces, U.S. Federal agencies, and selected allied armed forces and governments. SPS is globally available to any and everyone free of charge.

A global collaboration

While GPS was being created in the United States, the European Parliament was seeking systems to achieve better road safety. They established a resolution in 1984 to investigate solutions, inviting the European Commission–a body representing the interests of all European countries as a whole–to suggest appropriate research. Studies began around current and future innovations in telecommunications and informatics to discover what, if any, possible application there may be. One of these was the GPS. Over the next several years, telematics evolved as a way to improve the following: road and vehicle safety, environmental impact, and transportation efficiency.

The European telematics solutions expanded upon the U.S. based GPS technology to create something wholly unique–a vehicle tracking and support system beyond turn-by-turn navigation. It took the information gathered via satellite and interfaced with the electronic control unit (ECU) in a car. This made it possible for the system to digitally sense not only where automobiles traveled, but how they behaved and the different situations they may encounter.

The first car company to propose driver assistance technology for its customers was General Motors (GM) and it wasn’t OnStar.

A 30 year-old vision realized 20 years ago

some auto brands with OEM telematics

OnStar was unveiled at the 1996 Chicago Auto Show and first offered to customers in the production models of 1997 Cadillacs. The system was the first time vehicle embedded telematics was broadly available on the market, but it wasn’t the first time GM pursued driver assistance technology.

Driver Aid, Information and Routing (DAIR) is a system that GM engineers designed in 1966 that was then installed in two prototype vehicles and used punch cards to aid with turn-by-turn navigation. The gaps on the cards represented the basic directions needed on a specific route. This made it possible to drive to a pre-chosen destination without a map. But DAIR didn’t stop there. It also proposed restructuring America’s roadways by burying magnetic sensors beneath the pavement. These sensors would receive communications on highway conditions and accident reports from relay stations set-up all over the country. This information would be sent to drivers via a Visual Sign Minder–a basic heads-up display–mounted on their dashboard. It was recommended as a response to the rapid highway expansion of the era.

Per the DAIR brief, “Today’s complex roadways, increased vehicle speeds and heavy traffic intensify the driver’s need for frequent directions and information. DAIR meets this need for increased safety and driving enjoyment with a simple, low-cost communications system.” Because of the extensive infrastructure overhaul that was required to bring the idea to life, however, DAIR never got beyond prototype. GM kept working and activated its 1960s vision 30 years later with OnStar.

Telematics OEMs and stand-alones

where OEM telematics are installed

The initial OnStar was a classic case of telematics original equipment manufacturer (OEM) implementation. An OEM is usually defined as parts from one manufacturer used to create an overall product sold by another. In the case of transportation it reflects vehicles coming off the factory floor with the automaker’s proprietary technology already installed. Per The Global Automotive OEM Telematics Market, a study conducted by Berg Insight, the number of OEM embedded systems will hit 159 million globally by 2020.

The reason for this push is primarily safety and many of the rooted systems will be rudimentary “first responder” based, such as the ACN telematics of Europe’s eCall and Russia’s ERA-GLONASS. By 2018, all cars in those two regions are mandated to come off the assembly line equipped with a telematic system built to react to accidents in two ways. The first is by automatically sending a signal to E112–Europe’s 911–when a connected car is involved in a crash. The second is by a motorist pushing a button on the telematics enabled dashboard to alert E112 of a collision or incident they’ve just witnessed. It’s a way of ensuring all drivers are protected–whether they have telematics or not.

 

In 2012, GM decided to make OnStar’s basic features available to everyone and created OnStar FMV (For My Vehicle). This dongle-based solution joined other systems– such as Verizon’s hum–that work through a car’s onboard diagnostics (OBD) portal. These standalones allow you to plug the telematic device into your OBD port and upload software into your car’s ECU to gain such benefits as navigation, hands-free calling and automatic crash notification (ACN). What it doesn’t give you that OEMs provide are more advanced features like unlocking your car via satellite.

The new world of usage-based insurance (UBI)

This telematic solution is also the brain behind usage-based insurance (UBI). UBI means exactly what the acronym stands for–usage-based insurance policies and premiums. Instead of crafting policies and charging motorists through statistics and analytics, UBI calculates based on how someone actually operates his or her car. Because the device is plugged into the car’s OBD, it gathers and sends driver behavior data back to insurance carriers. This has made it possible for policy flexibility and leads to charging more accurate rates and lowering costs for drivers who are at less risk.

Mobile telematics data gathering

The future of telematics has to do with mobile data gathering. Your smartphone is now able to collect the same information that was only available via OEM or dongles. Verizon’s hum is an example of a three-way system–speaker, OBD reader and cell phone. The speaker works like OnStar, which allows you to contact live emergency services with the touch of a button.

Drivewell from Cambridge Mobile Telematics, on the other hand, is testing mobile telematics technology that tracks your driving behavior with or without a “wireless tag device.” The optional  attachment fits on your windshield and sends the telematics data captured by your smartphone to either the company for diagnostic purposes or to your insurance carrier. The company has also added a unique gaming aspect to their telematic service by creating safe driving competitions and incorporating leaderboards. A recent trial in South Africa–where the traffic fatality rate is among the highest in the world–showed a 30 percent increase in better driving due to the play factor. It’s one of many data gathering software options showing more expansive ways the technology can be used in the non-commercial space. But telematics has long been an invaluable tool in commercial fleet use.

Fleet vehicle tracking with telematics

fleet of trucksVehicle telematics play an essential role for fleet management. The systems keep costs down, productivity up and drive the overall efficiency of commercial transportation by tracking vehicle movement, its status–does it need gas? Is it time for maintenance?–driver behavior and more. By attaching a telematic unit to each truck that wirelessly connects to a central hub in the fleet’s business office, managers can track the vehicle’s location, manage performance and monitor conditions for driver safety and protection. Incorporating the technology in the commercial vehicle industry has modernized it and made it a more efficient business.

These telematic devices are excellent commercial partners and have also been embraced by the U.S. government to help it manage the vast fleet of the General Services Administration (GSA).

Example of connecting cars to government with GSA

The GSA offers workspace to over 1 million federal employees, manages the preservation of 480+ historic buildings and handles the purchase and distribution of goods and services used by the federal government. Part of this agency includes GSA Fleet, which has been providing motor vehicles to 75+ participating agencies since 1954.

As of 2016, all GSA Fleet vehicles available for purchase have OEM telematics while lessees can choose installing a non-OEM telematic device. To better streamline this technology, GSA shifted from working with two different providers and awarded AT&T Mobility the Blanket Purchase Agreement (BPA). AT&T’s two-tiered solution–simple GPS vehicle tracking and full diagnostics–enables the federal government to keep tabs and maintain their spread out automobile inventory more efficiently and consistently.

Flexible and expansive path to safer, more efficient driving

Telematics are capable of everything from sending information back to auto insurance carriers to affect your premiums to automatically alerting emergency services when you’re in need of roadside assistance. What began, basically, as the GPS has grown to include such things as infotainment, hands-free calling and vehicle-to-vehicle (V2V) communication. Companies all over the globe are embracing the technology in strategic and actionable ways.

In June, Visiongain released a report on the Top 20 OEM and Non-OEM connected car companies entitled Top 20 Connected Car Companies 2016: Leading Suppliers of Automotive In Vehicle Telematics By Service Provider Featuring Technologies For Safety, Security, Infotainment, Remote Diagnostics & Vehicle to Everything Communications. The 181-page report outlines the different strategies, strengths and futures of each company. Per the report, the companies to watch in both categories are as follows:

Top 10 Telematics OEMS

BMW AG

Daimler AG

Fiat Chrysler Automobiles (FCA)

Ford Motor Company

General Motors

Honda Motor Company

Tesla

Toyota Motor Corporation

Volkswagen Group

Volvo

Top 10 Telematics Non-OEMs

Apple Inc.

AT&T Inc.

Broadcom Corporation

Google Inc. (Android)

Qualcomm Inc.

Samsung

Sierra Wireless

Tech Mahindra Ltd.

Verizon Telematics

Visteon Corporation

Outlook for the future

As automobiles become more autonomous, the technology that enables their interaction with infrastructure and each other will continue to innovate. Moving forward, more governments will continue flexing auto legislation muscles to ensure vehicles driving on their country’s roads are the safest and most efficient–for the environment, motorists, pedestrians, cyclists and economy. This means expanding, innovating and pushing telematics even further as cars become smarter. It is the bridge that puts a zero fatality, eco-friendly future within our grasp.

 

, , , , , , , , , , , , , , , , , , , , , ,