Collision Avoidance Systems: The Keys to Road Safety

With traffic fatalities rising at an alarming rate, collision avoidance systems are a promising solution.

cars without collision avoidance systemsPer the Association for Safe International Road Travel (ASIRT), approximately 1.25 million people die in road accidents each year with an additional 20-50 million injured. That averages 3,287 global fatalities a day, making auto accidents the 9th leading cause of death. The World Health Organization (WHO) broke that down even further in 2015. Within low and lower-middle income populations, road deaths came in at number 10, but within the upper-middle class it ranked 7 just below Alzheimer’s Disease, but above both Liver and Stomach Cancer.

Then on February 15, 2017, it was reported that traffic fatalities in the United States would reach over 40,000 for 2016. That is the highest level since 2007 and one that has safety experts, law enforcement and automakers alike scrambling for solutions. While distracted driving and speeding certainly contribute to this uptick, many feel the biggest issue is complacency with enforcing seat belt and cell phone usage laws. Per ASIRT, if something isn’t done to stem this trend, car accidents will rise to number five by 2030. The technology that enables connected cars and autonomous vehicles has long been touted as the answer to everything from traffic congestion to traffic fatalities. In the case of the latter, collision avoidance systems are arguably the key to drastically reducing these tragedies—if not completely abolishing them.

The evolution of vehicle safety

pre-collision avoidance systems carWhile it’s a priority of today’s automakers, vehicle safety met with a great deal of resistance when cars were first created. The innovative machines were originally made of wood, had no doors, windows or turn signals, and were stopped by the equivalent of a bicycle brake—leather pads that pressed against the tires when activated by hand levers. These drove on unpaved roads without stop signs or traffic lights. True, top speed was 10 mph (16 km/h), however, little consideration was given to the safety of the people in the car and pedestrians on the street alike.

Crashes, on the other hand, have been a part of automobile history since the beginning. The first gas-powered car collision was in 1891 when inventor James Lambert was driving his single-cylinder automobile with a friend, ran over a tree root, lost control and hit a hitching post. Both men walked away with only minor injuries. The first gas-powered traffic fatality occurred in England in 1896 when Mrs. Bridget Driscoll was crossing the street and saw a self-powered horseless carriage barrelling (4 mph) down upon her. The driver, Arthur Edsall, sounded his horn, yelled to her to, “Watch out!”, but she was frozen by the sight of the horseless Roger-Benz motor car and was struck. At the inquest, which ruled it “accidental death,” the coroner commented, “I trust that this sort of nonsense will never happen again.”

The impact of Unsafe at Any Speed

The earliest safety features in cars were shatterproof glass and four-wheel brakes in the late 1920s. By the ‘30s all car bodies were steel instead of wood and hydraulic brakes were introduced. However, it was the 3-point seat belt created by safety engineer, Nils Bohlin of Volvo in 1959, that truly revolutionized and advanced automotive safety. While the seat belt is seen as the single most effective protection in an accident, other than the introduction of more efficient braking systems, none of these innovations helped cars avoid or lessen an actual collision.

The belt, however, was not standard on every car and when Ralph Nader’s Unsafe at Any Speed: The Designed-In Dangers of the American Automobile was published in 1965, there were over 47,000 fatal crashes reported in the United States alone. The book highlighted the lack of government involvement in the safety of motor vehicles and led to an almost immediate response. The U.S. Department of Transportation (DOT) was created within ten months of its release to oversee the safety and standards of the transportation industry. Then, in 1970, the Highway Safety Act was signed and the National Highway Traffic Safety Administration (NHTSA) was born. Since that time there have been significant strides in protecting both drivers and those who come in contact with the vehicles on the road.

The ins and outs of collision avoidance systems

visual for collision avoidance systems From pushing for better highways to support safer driving to producing autonomous cars as a way to alleviate a variety of vehicle related issues, focusing on ways to keep people safe while traveling on roads is a global initiative. Crash or collision avoidance systems are an integral part of this.

Collision avoidance systems consist of a bundling of sensors and tools that assist connected cars in getting the world to a true Vision Zero future. The different features that go into collision avoidance technology create an advanced driver assistance system (ADAS) to support a safer, more stable driving experience. These range from the familiar anti-lock braking system (ABS) to its more advanced automatic emergency braking (AEB) offspring and far beyond. The below are different features in ADAS and what they do.

Anti-lock Braking Systems (ABS), Electronic Stability Control (ESC) and Traction Control

One of the first technologies to assist in crash avoidance, anti-lock braking systems (ABS) were implemented in 1978. The ABS adjusts brake pressure to combat any locking of wheels that can cause a spinout and/or further damage to either vehicle. Electronic stability control (ESC) and traction control are two crash avoidance technologies directly linked to ABS. With ESC, when a car spins out, brakes are applied to different wheels and engine power is decreased to help stabilize the vehicle. Traction control works with the ABS wheel speed sensors to determine if engine power needs to decrease to allow one of the tires to regain traction in slippery conditions.

Forward Collision Warning

A key feature in crash avoidance, forward collision warning (FCW) uses sensors to determine how close an automobile is getting to either a vehicle or obstacle in front of it. If a crash seems imminent, the system alerts the driver—through sounds, lights or both—to react. FCW is a warning technology, not an automatic responder—it will not autonomously apply brakes or control the steering wheel to avoid a collision.

Automatic (or Autonomous) Emergency Braking (AEB)

This collision avoidance technology detects potential crashes and emergency situations the car is about to face then autonomously steps in to either avoid or lessen an impact should the driver not react in time. NHTSA strongly advocates AEB to lower fatalities and injuries on the road. Currently, it exists two ways: dynamic brake support (DBS) and crash imminent braking (CIB). DBS automatically augments how hard a driver presses on the brake pedal, and CIB slows or even stops the car to halt a collision or reduce its impact when a driver simply doesn’t react quickly enough. Either system will be standard on all U.S. models by 2022.

Lane Departure Warning (LDW)/Lane Departure Prevention (LDP)

Lane departure warning (LDW) systems use a variety of signals to alert you when your car is drifting too close to a lane so you can correct it. The alert may be a sound, vibrating seats or steering wheels, a visual cue with a light flashing and more. The system works through a mix of sensors and cameras that register lane markings and is triggered when the car gets too close to those lines or breaches them. This is different than lane departure prevention (LDP), which is autonomously proactive and will do such things as apply the brakes or connect with the steering wheel to gently turn your car to correct unintentional lane changing, which helps avoid a crash. LDW and LDP assume the potential lane change is accidental if the turn signal is not activated and will automatically shut off when you put on your blinker. As long as it’s on, the system remains dormant. The biggest goal with LDW and LDP is to lower the single car highway accident. Per AAA, these systems have the potential to do so by approximately 46% once they are installed on a broad scale.

Adaptive Headlights

Adaptive headlights have a self-leveling system that senses how a car is moving and reacts to the terrain and driving habit of the operator. The level sensor uses electric servomotors to adjust the intensity of the lights and their position to stay on the highway and maintain visibility around curves, over hills and when approaching road hazards. These are currently required on all new cars in Europe and all U.S. cars that have bi-xenon headlights.

Blind-Spot Detection

Blind spots cause a myriad of issues while driving, and mirrors and quick looks over the shoulder can only capture so much area. Blind-spot detection uses either sensors or cameras to project preventative information about the hardest areas to see around the car. In some models the driver can turn the system on or off. Some vehicles, like the more recent Infiniti M-Series, also offer steering resistance if the driver doesn’t heed the warning signal.

Note on rear-end collision avoidance

Rear-end collisions account for a vast majority of traffic accidents. Currently, there are no specific collision avoidance systems created to deal with this issue, but all of the components combined address all manner of vehicle incidents including rear-end collisions.

Situational Awareness

V2V connectingIn its most basic form, situational awareness is all about keeping alert to your surroundings at all times. It affects us everyday whether it’s walking down the street, moving through the halls at work or driving our car. Staying clued into what’s going on around you is the first step to collision avoidance. Technology has added an extra level of safety through the installation of sensors and cameras into connected cars to boost a driver’s situational awareness while operating his or her automobile. However, vehicle-to-vehicle (V2V) technology keeps the automobile updated on things even LIDAR can’t see. With V2V, cars speak to each other, sharing information about proximity to other automobiles and road conditions. This enhances the vehicle’s situational awareness and is one of the innovations that makes the autonomous operation of these vehicles possible.

Pushing forward technology

In March of 2016, U.S. DOT, NHTSA and the Insurance Institute for Highway Safety (IIHS) announced that 20 automakers had committed to making automatic emergency braking  (AEB) standard on all new cars by September 1, 2022. These 20 make up 99 percent of the U.S. auto market. By getting the car manufacturers to agree to this, the technology will be available sooner than would be the case if the NHTSA put the makers through the normal regulatory process.

As part of that commitment, the following is agreed:

  • AEB will be standard on almost all light-duty cars and small trucks with a gross weight of 8,500 lbs. or less by September 1, 2022 and virtually every truck with a gross vehicle weight between 8,501 and 10,000 lbs. by September 1, 2025.
  • Automakers who have signed on will ensure the vehicles have both a forward collision warning system that “meets a subset of the National Highway Traffic Safety Administration’s current 5-Star Safety Ratings program requirements on the timing of driver alerts and an automatic braking system that earns at least an advanced rating in the current Insurance Institute for Highway Safety front crash prevention track tests. The baseline performance measures are a speed reduction of at least 10 mph in either the IIHS 12 or 25 mph tests, or a speed reduction of 5 mph in both of the tests.”
  • IIHS and NHTSA will implement an annual monitoring and updating system on safety progress.

The IIHS and NHTSA believe employing these safety measures will prevent 28,000 crashes and 12,000 injuries per year.

Top 2017 vehicles with advanced driver assistance systems (ADAS)

collision avoidance alert on dashboardThe future of ADAS now lies within cracking the autonomous vehicle code. All of the technology going into these systems are part of the driverless toolkit and as self-driving cars evolve, so will collision avoidance systems. Automakers have already incorporated several safety features for their 2017 vehicles, which include the following:

  • forward-collision warning
  • auto braking city speed
  • auto braking highway speed
  • lane departure warning (LDW)
  • lane departure prevention (LDP)
  • blind-spot warning
  • rear-cross traffic
  • rearview camera

The following car models come with all of these collision avoidance systems features as standard:

  • Acura RLX year 2016/2017
  • Cadillac CTS V 2017
  • Genesis G80 2017
  • Genesis G90 2017
  • Honda Accord Hybrid 2017
    • This car offers Honda Lane Watch in the blind-spot warning category. This feature is a camera mounted in the outside passenger mirror that looks down the side of the car. It does not show the driver’s side at the moment and doesn’t alert you if a car is in the blind spots on either side.
  • Lexus LX 2017

Some models with noted safety capability:

  • The 2016/2017 Tesla S and X offer all features except rear-cross traffic.
  • Rear view cameras are standard on every Subaru model for 2016/2017 while all of the other safety features are offered as optional on all models except three.
  • All 2016/2017 Volvos offer the features in a combination of optional and standard.
  • Other than just a handful of models in the 2016, 2017 and 2016/2017 class, Toyota’s 2016/2017 fleet provide the safety systems either as optional or standard.

Things to consider

driver POV through rainy windshieldThe combination of these collision avoidance features creates a safer driving experience and automakers around the world are actively installing these systems in their vehicles to lower the instances of crashes. Drivers, however, need to understand that for all of the technology and innovation that is being implemented, they need to stay alert behind the wheel. Nothing completely stops a crash automatically and handing over the reins to your connected car entirely leads to dangerous consequences. As the autonomous car movement advances forward, so will the systems meant to avoid and lessen traffic fatalities and injury, but human intervention and addressing infrastructure will be necessary even when the steering wheel is a thing of the past.

, , , , , , , , , , , , , , , , , ,

Parking Technology: Saving Time and Space

self-parking technology for connected cars

Finding a place to store your car, whether short- or long-term, has been an issue almost as long as the horseless carriage has been around. The current influx of automobiles on the road, however, has made simply parking that much harder. This growth of  vehicles on the street has added unforeseen circumstances to the parking mix.  Things like traffic congestion, higher CO2 emissions, exorbitant fees, and parking so far away from your destination, you need to call another vehicle for that ”last mile” are big concerns. This has led to innovative advances in parking technology ranging from License Plate Recognition (LPR) to monitor who does and does not belong in a particular space to working with the brains of connected cars to support self-parking solutions.

The new way to grab a parking space

interactive parking space locator

Parking technology has been advancing for some time. The “drive in and find a spot” off-street parking lot and “parallel park it then drop in a quarter” on-street parking meter have already evolved. Advances in LPR technology help law enforcement and parking managers monitor license plates in off-street parking structures, while penalties for on-street parking expirations have decreased thanks to “type in your text number to receive a ‘time’s almost up’ alert” meters (at which you can pay with a credit or debit card). Those shifts, however, still aren’t enough to battle space limitations and traffic congestion. New, innovative parking technology is being enlisted and is typically split across four distinct areas: parking software solutions, automated parking structure systems, parking apps, and self-parking capability in connected cars.

Parking software and how it works

This parking technology provides interactive solutions that allow users to manage and oversee various parking garages, spaces and lots from a desktop and/or mobile device. Companies gather information on open spots, infractions, security issues, flow and more through the cloud and share that information with drivers and law enforcement. Per, a company that provides comparisons and info on various software over a range of businesses, the following three solutions are among the best parking management products.


Created by Tomahawk Technologies, the Operations Commander (OPS-COM) program allows clients to pay for their parking permits, violations and check their accounts via mobile or the internet. OPS-COM works with universities, colleges, local governments and other organizations.

iParq Parking Management System

This software manages parking permits, citations and advance sales for events as well as real-time cash and credit transactions. Its clients range from places of higher education to private operators and more.

Silvertrac Software

This is both a security and parking management software. It offers several services that streamline not only guard duties, but parking issues and general maintenance of sites. It makes it possible to handle all needs digitally and for security guards to manage several sites via their smartphones if needed.

Parking with robots

Automated parking solutions are those that incorporate robotic systems and space saving techniques to streamline and revolutionize existing garages. The vendors are innovative, presenting and providing both the hardware and software to support the goal of smarter use of space and time. Three of the companies currently building this unique parking technology are Parkmatic, Pari Car Parking and Perfect Park.  Each of these companies provides a unique automated system that uses robotics and stacking to park cars more efficiently. Drivers relinquish their vehicle at a designated spot at the car park, activate the system at a kiosk and the automobile is then whisked away to be automatically parked. When the owner returns, he or she retrieves the automobile usually by punching in a code at a keypad or inserting a card/parking ticket. The vehicle is automatically picked up and returned to him or her.

This parking technology is a huge space saver. No matter how proficient we may be at putting our cars into a parking spot, we have inherent limitations: ourselves. We need a certain amount of wiggle room to exit and enter our vehicles. Automated parking garages maneuver cars into smaller spaces without causing damage to the car or discomfort for the driver.

Automated garages are more prevalent overseas than in the U.S., like the nine-story robotic facility at the Emirates Financial Tower (EFT) in Dubai, which was unveiled in 2013. However, with the rise in traffic congestion, urban sprawl, population growth and loss of space, more of these robotic parking lots are being built in America.

The all-inclusive Bosch solution

At the 2017 Consumer Electronics Show (CES) in Las Vegas, the 130+ year-old engineering and electronics company, Bosch, presented an as yet unnamed all-electric, highly interactive, customizable concept car. Parking technology is included in the vehicle, which not only autonomously parks your car, but locates a space for you.

On the Bosch website, mobility solutions include self-park capability as well as parking innovation to manage lots, point a driver to an available parking space and create smarter parking garages, just to name a few. This all-inclusive solution claims to be capable of decreasing CO2 emissions due to lowering the need to drive around looking for a spot and increase free time by 60 hours per year per driver.

Parking technology in the mobile ageapp enabled parking technology

Other entrants in the parking technology race are parking apps, either city sponsored or independent, that help drivers find spaces and save money. This digital parking technology is easily accessed via your mobile-device and helps drivers by locating open spots, helping them reserve and pay for spaces in advance and more—all from their cell phone or tablet. The apps cut down on the time spent and gridlock caused cruising around looking for a parking spot.

Self-parking technology expanding

While fully autonomous vehicles may still be in the test phase, many models are equipped with self-parking technology, also known as parking assist systems. Self-parking is accomplished two ways: vehicles equipped to literally park themselves and cars that assist you with parking.

But how does all of this work? Self-parking technology is most frequently used for parallel parking. For the most part, even the smartest vehicles require someone behind the wheel to navigate into a parking spot. Once the self-parking system is engaged, which is usually done by a flick of a switch or the press of a button on the center console, it uses sensors to detect an appropriately sized space in which to pull.  These sensors work in two different ways: ultrasonic and electromagnetic.

Ultrasonic technology

self-parking technology using ultrasonic sensors

Ultrasonic sensors attach to the front of a vehicle’s bumper and calculate the distance to obstacles via sound waves. They emit an audio signal when another vehicle or object is sensed—the system can determine the distance between the automobile itself and whatever deterrent it’s facing. The closer the car gets to the object, the faster the signal sounds. These are fairly inexpensive and can detect obstacles even when the car is idle. However, affixing the sensor to the bumper can mar the car’s appearance, tow bars and bike racks can’t be attached or they will block the sensors, and the field of detection can only sense front to back, often missing small objects and the radio waves scatter on steep inclines.

Electromagnetic detection

self-parking technology using electromagnetic waves

Electromagnetic sensors work off of electromagnetic waves that create a field around the bumper so that whenever an object enters the wave barrier, a signal is triggered. These can be placed inside the bumper and used with tow bars and bike racks. They are more expensive than ultrasonic and can only detect objects when the vehicle is moving.

In addition to these sensors, there are in-vehicle cameras that capture the environment and obstacles around the automobile and send it to the car’s on-board computer. The driver then manages the gears and braking while the self-parking system steers and maneuvers. This makes parallel parking easier and faster, alleviating traffic congestion to a certain extent and eliminating fender benders.

Parking technology goes truly driverless

console showing self-parking technology

As the self-driving car becomes more of a reality, advanced self-parking systems are as well. This means regulations need to be put in place to make the technology a reality on the streets. In January 2016, then Department of Transportation (DOT) Secretary, Anthony Foxx, approved a request by BMW to initiate the self-parking technology for its 2016 7 Series models sold in the U.S. The move is part of DOT’s goal to support continued development of self-driving car technology. Regulations require the driver to stop the car, place it in park and remain standing within six feet of the automobile as the vehicle is parked via a remote control that prompts the sensors and cameras on the car so the automated system can maneuver it into a space successfully. The driver has the option to stop the process at any time.

Concerns over self-parking technologies and robotic garages

sample of what could happen with self-parking technology and automatic garages

As with driverless cars in general, there are plenty of concerns over automating the operation of a machine that engages with the public in so many different ways. The idea of making something as delicate as navigating into a parking space or garage, whether on-street or off-street, completely autonomous raises a good many questions about safety. As smart parking becomes more truly driverless, issues with failures surface and ensuring that these problems don’t continue is the number one priority.

Even with all of this, however, robotic parking garage and self-parking technology innovations are bound to be implemented. The glitches of the first attempts are now being worked out and consideration is being taken as to what is required to make both successful around the world.

A smart answer to traffic congestion

Parking throughout the world is at a premium and our tendency to slow down to a crawl to make sure we grab an open spot causes congestion. And when we slow down, that slows everyone behind us down… and the ones behind them… and the ones behind them…

This is called the “ripple effect” or “traffic wave.” It’s a common cause of gridlock on the highway. With parking, however, this is exacerbated, because not only is the offending automobile going at a snail’s pace, once it finds the spot, it needs to maneuver into it. This street parking debacle during busy and peak times causes frustration, tons of CO2 emissions and more congestion.

This is where smart parking technologies can alleviate the problem. The ability to be guided to a parking space quickly and efficiently helps the driver go directly to a spot without having to cruise around and hold up traffic. Add to that self-parking technology which intends to make that parallel parking moment faster and smoother. While other cars have to wait while the vehicle is going into the spot no matter what, the systems being created today greatly decrease wait time and restore the flow of traffic.

open space on the street

In need of solutions that make space

2016 saw an historic high in auto sales in the U.S.—a record 17.5 million new cars were sold—and 2017 looks to be on target to show a steady rise globally. With the automotive industry putting more and more cars on the road, finding a place to store them for the short or long term is going to be even more difficult. Automated parking garages and self-parking technology are solutions that make sense for a more space efficient, congestion-free future in our cities and on our roads.


, , , , , , , , , , , ,

Telematics: The Bridge to Your Connected Car

Telematics enables screen in carFrom automatic crash notification (ACN) to fleet management, Telematics is the “connection” that makes the connected car a wireless marvel of the automotive world.

Telematics is a hot topic these days. With the current focus on self-driving vehicles, connected cars, cyber security, and especially, rising levels of traffic fatalities, the communication network that makes it possible for your automobile to move and react on its own is rapidly innovating. Telematic solutions are more readily available for all vehicles and even mandated as standard in some countries. The technology’s origin is oddly similar to that of the Jeep, and its integration into day-to-day life has been as seamless as that ubiquitous, stalwart vehicle.  But what exactly is telematics?

The term “telematics” is a translation of “telematique.” This was coined by two French scientists in a 1978 report to the French government on the computerization of society. They combined “telecommunications” with “informatique.” Per the Oxford Dictionary, it is defined as “the branch of information technology which deals with the long-distance transmission of computerized information.” And this brings us to its origins.

U.S. armed forces initiative goes globally civilian

The United States Navy began experimenting with satellite navigation to track its nuclear submarines in the early 1960s. By using the “Doppler Effect”–shifts in the satellite’s radio signal–captains could accurately find a sub’s location in minutes. The Department of Defense (DoD) then took what naval scientists had learned and launched its first Navigation System with Timing and Ranging (NAVSTAR) satellite in 1978. By 1993, it included 24 satellites and became the Global Positioning System (GPS).

Today, GPS is owned by the U.S. Government and run by the United States Air Force (USAF). It operates on two different levels to accommodate the separation between military/government use and worldwide access: Precise Positioning Service (PPS) and Standard Positioning Service (SPS). PPS is accessible to U.S. Armed Forces, U.S. Federal agencies, and selected allied armed forces and governments. SPS is globally available to any and everyone free of charge.

A global collaboration

While GPS was being created in the United States, the European Parliament was seeking systems to achieve better road safety. They established a resolution in 1984 to investigate solutions, inviting the European Commission–a body representing the interests of all European countries as a whole–to suggest appropriate research. Studies began around current and future innovations in telecommunications and informatics to discover what, if any, possible application there may be. One of these was the GPS. Over the next several years, telematics evolved as a way to improve the following: road and vehicle safety, environmental impact, and transportation efficiency.

The European telematics solutions expanded upon the U.S. based GPS technology to create something wholly unique–a vehicle tracking and support system beyond turn-by-turn navigation. It took the information gathered via satellite and interfaced with the electronic control unit (ECU) in a car. This made it possible for the system to digitally sense not only where automobiles traveled, but how they behaved and the different situations they may encounter.

The first car company to propose driver assistance technology for its customers was General Motors (GM) and it wasn’t OnStar.

A 30 year-old vision realized 20 years ago

some auto brands with OEM telematics

OnStar was unveiled at the 1996 Chicago Auto Show and first offered to customers in the production models of 1997 Cadillacs. The system was the first time vehicle embedded telematics was broadly available on the market, but it wasn’t the first time GM pursued driver assistance technology.

Driver Aid, Information and Routing (DAIR) is a system that GM engineers designed in 1966 that was then installed in two prototype vehicles and used punch cards to aid with turn-by-turn navigation. The gaps on the cards represented the basic directions needed on a specific route. This made it possible to drive to a pre-chosen destination without a map. But DAIR didn’t stop there. It also proposed restructuring America’s roadways by burying magnetic sensors beneath the pavement. These sensors would receive communications on highway conditions and accident reports from relay stations set-up all over the country. This information would be sent to drivers via a Visual Sign Minder–a basic heads-up display–mounted on their dashboard. It was recommended as a response to the rapid highway expansion of the era.

Per the DAIR brief, “Today’s complex roadways, increased vehicle speeds and heavy traffic intensify the driver’s need for frequent directions and information. DAIR meets this need for increased safety and driving enjoyment with a simple, low-cost communications system.” Because of the extensive infrastructure overhaul that was required to bring the idea to life, however, DAIR never got beyond prototype. GM kept working and activated its 1960s vision 30 years later with OnStar.

Telematics OEMs and stand-alones

where OEM telematics are installed

The initial OnStar was a classic case of telematics original equipment manufacturer (OEM) implementation. An OEM is usually defined as parts from one manufacturer used to create an overall product sold by another. In the case of transportation it reflects vehicles coming off the factory floor with the automaker’s proprietary technology already installed. Per The Global Automotive OEM Telematics Market, a study conducted by Berg Insight, the number of OEM embedded systems will hit 159 million globally by 2020.

The reason for this push is primarily safety and many of the rooted systems will be rudimentary “first responder” based, such as the ACN telematics of Europe’s eCall and Russia’s ERA-GLONASS. By 2018, all cars in those two regions are mandated to come off the assembly line equipped with a telematic system built to react to accidents in two ways. The first is by automatically sending a signal to E112–Europe’s 911–when a connected car is involved in a crash. The second is by a motorist pushing a button on the telematics enabled dashboard to alert E112 of a collision or incident they’ve just witnessed. It’s a way of ensuring all drivers are protected–whether they have telematics or not.


In 2012, GM decided to make OnStar’s basic features available to everyone and created OnStar FMV (For My Vehicle). This dongle-based solution joined other systems– such as Verizon’s hum–that work through a car’s onboard diagnostics (OBD) portal. These standalones allow you to plug the telematic device into your OBD port and upload software into your car’s ECU to gain such benefits as navigation, hands-free calling and automatic crash notification (ACN). What it doesn’t give you that OEMs provide are more advanced features like unlocking your car via satellite.

The new world of usage-based insurance (UBI)

This telematic solution is also the brain behind usage-based insurance (UBI). UBI means exactly what the acronym stands for–usage-based insurance policies and premiums. Instead of crafting policies and charging motorists through statistics and analytics, UBI calculates based on how someone actually operates his or her car. Because the device is plugged into the car’s OBD, it gathers and sends driver behavior data back to insurance carriers. This has made it possible for policy flexibility and leads to charging more accurate rates and lowering costs for drivers who are at less risk.

Mobile telematics data gathering

The future of telematics has to do with mobile data gathering. Your smartphone is now able to collect the same information that was only available via OEM or dongles. Verizon’s hum is an example of a three-way system–speaker, OBD reader and cell phone. The speaker works like OnStar, which allows you to contact live emergency services with the touch of a button.

Drivewell from Cambridge Mobile Telematics, on the other hand, is testing mobile telematics technology that tracks your driving behavior with or without a “wireless tag device.” The optional  attachment fits on your windshield and sends the telematics data captured by your smartphone to either the company for diagnostic purposes or to your insurance carrier. The company has also added a unique gaming aspect to their telematic service by creating safe driving competitions and incorporating leaderboards. A recent trial in South Africa–where the traffic fatality rate is among the highest in the world–showed a 30 percent increase in better driving due to the play factor. It’s one of many data gathering software options showing more expansive ways the technology can be used in the non-commercial space. But telematics has long been an invaluable tool in commercial fleet use.

Fleet vehicle tracking with telematics

fleet of trucksVehicle telematics play an essential role for fleet management. The systems keep costs down, productivity up and drive the overall efficiency of commercial transportation by tracking vehicle movement, its status–does it need gas? Is it time for maintenance?–driver behavior and more. By attaching a telematic unit to each truck that wirelessly connects to a central hub in the fleet’s business office, managers can track the vehicle’s location, manage performance and monitor conditions for driver safety and protection. Incorporating the technology in the commercial vehicle industry has modernized it and made it a more efficient business.

These telematic devices are excellent commercial partners and have also been embraced by the U.S. government to help it manage the vast fleet of the General Services Administration (GSA).

Example of connecting cars to government with GSA

The GSA offers workspace to over 1 million federal employees, manages the preservation of 480+ historic buildings and handles the purchase and distribution of goods and services used by the federal government. Part of this agency includes GSA Fleet, which has been providing motor vehicles to 75+ participating agencies since 1954.

As of 2016, all GSA Fleet vehicles available for purchase have OEM telematics while lessees can choose installing a non-OEM telematic device. To better streamline this technology, GSA shifted from working with two different providers and awarded AT&T Mobility the Blanket Purchase Agreement (BPA). AT&T’s two-tiered solution–simple GPS vehicle tracking and full diagnostics–enables the federal government to keep tabs and maintain their spread out automobile inventory more efficiently and consistently.

Flexible and expansive path to safer, more efficient driving

Telematics are capable of everything from sending information back to auto insurance carriers to affect your premiums to automatically alerting emergency services when you’re in need of roadside assistance. What began, basically, as the GPS has grown to include such things as infotainment, hands-free calling and vehicle-to-vehicle (V2V) communication. Companies all over the globe are embracing the technology in strategic and actionable ways.

In June, Visiongain released a report on the Top 20 OEM and Non-OEM connected car companies entitled Top 20 Connected Car Companies 2016: Leading Suppliers of Automotive In Vehicle Telematics By Service Provider Featuring Technologies For Safety, Security, Infotainment, Remote Diagnostics & Vehicle to Everything Communications. The 181-page report outlines the different strategies, strengths and futures of each company. Per the report, the companies to watch in both categories are as follows:

Top 10 Telematics OEMS


Daimler AG

Fiat Chrysler Automobiles (FCA)

Ford Motor Company

General Motors

Honda Motor Company


Toyota Motor Corporation

Volkswagen Group


Top 10 Telematics Non-OEMs

Apple Inc.

AT&T Inc.

Broadcom Corporation

Google Inc. (Android)

Qualcomm Inc.


Sierra Wireless

Tech Mahindra Ltd.

Verizon Telematics

Visteon Corporation

Outlook for the future

As automobiles become more autonomous, the technology that enables their interaction with infrastructure and each other will continue to innovate. Moving forward, more governments will continue flexing auto legislation muscles to ensure vehicles driving on their country’s roads are the safest and most efficient–for the environment, motorists, pedestrians, cyclists and economy. This means expanding, innovating and pushing telematics even further as cars become smarter. It is the bridge that puts a zero fatality, eco-friendly future within our grasp.


, , , , , , , , , , , , , , , , , , , , , ,